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Abstract

This paper is concerned with recursive estimation, testing and forecasting of the volatility of

daily returns in the Standard and Poor's 500 Compasite Index (8&P 500) in the presence of extreme
observations, or significant spikes in the volatility of daily returns. The empirical analysis increases the
sample size up to 12000 observations recursively to examine the effects of extreme observations on: (i) the
parameter estimates of the GARCH(1,1) process; (ii) their associated asymptotic and robust t-ratios; (ii1) the
second and fourth moment conditions for stationarity, consistency and asymptotic normality; and (iv) the

forecast performance for periods with significant spikes in volatility and for periods of relative calm.

1 INTRODUCTION

The modelling of volatility has been a very active
area of research in finance in recent years, and has
been largely motivated by the importance of risk
considerations in economnic and financial markets.
Estimates of volatility are used widely for a variety
of reasons, including modelling the premium in
forward and futures markets, portfolio selection,
asset management, pricing primary and derivative
assets, valuation of warrants and options,
designing optimal hedging strategies for options
and futures markets, evaluating risk spill-overs
across markets, measuring announcement effects
in event studies, and examining asymmetries and
leverage effects.

Engle (1982) first captured the time-varying nature
of wolatility with the autoregressive conditional
heteroscedasticity (ARCH(p)) model. The ARCH
model was generalized to GARCH{p.q) by
Bollerslev (1986), and this has proved to be the
single most popular time-varying volatility model
in practice. GARCH has two quite attractive
features, namely the persistence of volatility, and
mathematical and computational simplicity. Many
theoretical  results, including the statistical
properties of the model and the asymptotic
properties of several estimation methods, are now
available, and these provide a solid foundation for
applications of the model (see Li et al. {15999} for a
survey, directed towards practitioners, of recent
important theoretical resuits for GARCH models).

A common feature encountered in high frequency
financial time series is the occurrence of extreme
observations, or significant spikes in volatility,
which can adversely affect the estimates and
forecasts of volatility. This paper is concerned
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with recursive estimation, testing and forecasting
of the volatility of daily returns in the Standard
and Poor's 500 Composite Index (S&P 500) in
the presence of extreme observations in the
volatility of daily returns. The empirical analysis
increases the sample size up to 12000
observations recursively to examine the effects
of exireme observations on: (i) the parameter
estimates of the GARCH(1,1) process; (ii} their
associated asymptotic and robust t-ratios; (i) the
second and fourth moment conditions for
stationarity,  consistency and  asymptotic
normality; and (iv) the forecast performance for
periods with significant spikes in volatility and
for periods of relative calm.

Several interesting results emerge from the
analysis, namely: expanding the sample sizes
recursively and including an extreme observation
does not necessarily improve the accuracy of
predicting future extreme observations; the
parameter estimates of the GARCH(1,1) process,
the associated asymptotic and robust t-ratios, the
second and fourth moment regularity conditions,
and various forecast performance measures, are
all highly volatile in small samples, but stabilise
when an extreme cbservation is included in the
estimation period at sample sizes in excess of
2000, so that increasing the sample size
recursively beyond the extreme observation is
unnecessary; the robust f-ratios are, in general,
dramatically superior to the asymptotic t-ratios;
and the second and fourth moment conditions are
generally satisfied, but increasing the sample
sizes recursively does not necessarily help to
satisfy these conditions, or to improve the
forecasting performance.

The plan of the paper is as follows. Section 2
presents the AR(1)GARCH(1,1) model. Section



3 describes the data. The empirical results are
analysed in Section 4. Some concluding remarks
are given in Section 5.

2 THE AR(1)-GARCH(1,1) MODEL

The model to be estimated is AR(1)GARCH(1,1),
where the conditional mean {(or log returns of the
S&P 500 Index) has the structure given by

Vo =HT@Y, tE (1)
and the conditional variance of the unconditional
shock g, is generated by

&, =1,h, @

h, =w+osl, + B, (3)
where 1, is a sequence of normaily, independently
and identicaily distributed random variables with
zero mean and unit variance. Sufficient conditions
for k1, to be positive and for the GARCH process to
exist are that >0, >0, and B2 0.

Several statistical properties have been established
for the GARCH(1,1) process in order to define the
unconditional moments of g First, the second
moment of g exists if & + § < 1, which ensures
that the GARCE(], 1) process is strictly stationary
and ergodic, and Eg’ <o (see Bollerslev (1986)
and Ling and Li (1997)). Second, the sufficient
condition for the existence of the fourth moment of
g, is ko’ + 20f + B* < 1 (see Bollerslev {(1986)),
where & is the conditional fourth moment of 7,
Under the assumption of conditional normality,
k=E (17})=3, so that the condition becomes 3¢

+20B +Bi<,

For the GARCH(1,1) model, Nelson (19%90)
obtained the necessary and sufficien: condition for
strict stationarity and ergodicity as:

E(ln(on} + By <0. (4)
A difficulty in applying the necessary and
sufficient condition in (4) is that it needs to be
simulated, Condition (4) allows « + B to be unity,
or slightly greater than unity, in which case
Eg? = oo, The condition for a finite variance of

the GARCH(1,1) process is & + B < 1, and the
condition for a finite fourth moment is 3¢ + 208
+ B? < 1. The fourth moment condition is clearly
the most stringent.

3 DATA

The daily closing values of the Standard and
Poor’s 500 Composite Index for the period 3
January 1930 to 31 March 1999 were exiracted
from the Datastream database, and the daily return
was calculated as the ratio of the close-to-close
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change in the index to the previous trading day’s
close.

The long period selected includes many
significant spikes in the volatility of daily
returns, the largest of which occurred on 19
October 1987, and also many episodes of relative
caim. Consequently, this data set offers an
opportunity to study the effects of extreme
observations on the estimation and forecasting of
volatility over an extended period.

Various subsets of the data are used for
estimation and forecasting. To evaluate the
effects of extreme observations on estimation,
12006 observations from the period 3 January
1950 to 7 May 1997 are used. For the evaluation
of forecasting performance, two separate “out-
of-sample”  periods consisting of 250
observations each are used: the first of these,
from 8 May 1997 to 5 May 1998, includes some
significant spikes in the volatility of daily
returns, while the second, from 13 May 1996t0 7
May 1997, is a relatively calm period.

4 EMPIRICAL RESULTS

In order to evaluate the effects of increasing
sample sizes and  including gxXtreme o
bservations, the AR(1}-GARCH(I1,1) model is
estimated recursively. In the first set of results,
the sample starts with 200 cbservations from 3
January 1950 to 21 November 1950. The sample
is then expanded recursively through to the end
of the sample until it reaches 12000 observations
at 7 May 1997.

Figure 1 gives the estimated values of the ARCH
parameter o as the sample size is increased
recursively,  The actual volatility of the daily
returns is shown in the lower half of the figure to
indicate where the volatility spikes occur. It is
clear that the estimates of o are highly volatile
when the sample size is below 2000. Significant
spikes in the actual volatility correspond to huge

variations in the estimates of ¢  When the
sample size exceeds 4000, however, the
variations in o estimates become less

pronounced and the estimates begin a downward
wend. The huge spike in volatility on 19 October
1987 caused a shift upwards in the trend, but this
shift is relatively small compared with the
variations for low sample sizes.

Figure 2 presents the asympiotic t-ratios and the
robust t-ratios of Bollerslev and Wooldridge
(1992). The vobust t-ratios sre designed to be
ingsensitive to departures from normality,
especially extreme observations. Both sets of 1-
ratios are somewhat erratic at sample sizes below



2000, but subsequently follow a relatively smooth
upward trend. At zample sizes above 6000, the
robust t-ratios change litle, while the asymptotic t-
ratios continue increasing. The effects of
significant spikes in volatility on the two t-ratios
are dramatically different. Each spike in volatility
increases the asymptotic t-ratios but decreases the
robust t-ratios, with the magnitudes of the shifts
being far greater for the asymptotic t-ratios.

Bstimates of the GARCH parameter §} are given in
Figure 3. This is virtually a mirror image of the
estimates of ¢, with the B estimates moving in the
opposite direction to the o estimates. There is also
much variability in the } estimates at sample sizes
below 4000 and subsequently a relatively smooth
upward trend. The spikes in volatility also have
larger impacts on the §§ esiimates when the sample
size 15 small.

Figure 4 shows the t-ratios for the B estimates. At
sample sizes below 2000, there is substantial
variability in the t-ratios, especially the asymptotic
t-ratios. At large sample sizes, the asymptotic t-
ratios have a significant upward trend while the
robust t-ratios are much flatter.

The second moment condition for stationarity and
consistency, © + B < 1, and fourth moment
condition for asymptotic normality, 307 + 2of +
B? < 1, are given in Figures 5 and 6, respectively.
These two graphs are almost identical in pattern.
Again, spikes in the volatility of returns have large
impacts on the conditions when the sample size is
below 5000. When the sample size is very large,
even a huge spike such as that of 19 Ociober 1987
has a refatively small impact on the conditions. It
is significant to note that both conditions are
satisfied for all sample sizes in the forward
recursions.

The second set of estimates is presented for
backward recursions, with the end observation
fixed at 7 May 1997, The sample hegins with 200
observatiens from 23 July 1996 w0 7 May 1997,
and is then expanded recursively until it reaches
12000 observations at 3 January 1950,

Figure 7 presents the o estimates from these
backward recursions, Spikes in volatility have
huge impacts on the ¢ estimates for small sample
sizes. The most obvious feature of the swings is
the huge shift in (¢ estimates with the 19 October
1987 spike in volatility, after which the variations
in the o estimates are much smaller in magnitude.

The graph of the t-ratios for the o estimates in
Figure 8 shows that extreme observations have
much greater impacts before the inclusion of the
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19 October 1987 spike. Of note is the huge
increase in the asymptotic t-ratios when this
particular spike is included. In contrast, the
impact of this extreme observation on the robust
t-ratios is bargly visible.

As in the forward recursions, the graph of the B
estimates, as shown in Figure 9, is close to a
mirror image of Figure 7, with some subile
differences. The impact of the 19 October 1987
observation is relatively smaller on the
[ estimates. At smaller sample sizes there are
some changes in the B estimates that are much
larger than the corresponding changes in the ¢
estimates. This suggests that B estimates arc
more sensitive in smaller samples.

The sensitivity of {§ estimates in small samples is
also reflected in Figure 10. Both the asymptotic
and robust t-ratios show great variability for
sample sizes below 2300, prior to the inclusion
of the 19 October 1987 spike in volatility. After
the inclusion of this extreme observation, both t-
ratios become much smoother, especiaily the
robust t-ratios.

In comparing the forward and backward
recursions, the robust t-ratios for both cand B
estimates show a slight upward trend at large
sample sizes in the backward recursions, but are
flatter in the forward recursions.

The second and fourth moment conditions for
stationarity,  consistency and  asymptotlic
normality for the backward recursions are shown
in Figures 11 and 12. Both the second and fourth
moement conditions show high variations prior to
the inclusion of the 19 October 1987 observation
spike, and much smalter variations subsequently.
Whiie the second moment condition holds for all
samples, the fourth moment condition is violated
in some sample ranges. Some of these violations
cocur for relatively large samples (at around
8000 observations).

To evaluate the effects of increasing sample sizes
and including extreme observations on the
forecast performance of the GARCH(1,1} mode!,
backward recussions are used. In the first set of
forecasts, the forecast period is from 8 May 1997
to 5 May 1998, which includes an extreme
observation at 27 October 1997, Estimation of
the parameters o obtain these forecasts is in the
same manner as the . backward . recursions
explained above, with sample sizes ranging from
200 observations to 3000 observations. For each
sample size, 250 cne-day ahead forecasts are
made for the period § May 1997 1o 5 May 1998,
The prediction errors from these 250 forecasts
are then combined in the three measures of
forecast performance, namely mean absoiute



prediction error  (MAPE), mean absolute
percentage prediction error (MAPPE), and root
mean square prediction error (RMISPE).  These
measures are graphed in Figures 13 to 15,

Not surprisingly, MAPE and MAPPE show very
similar patterns. They both vary substantiatly for
small sample sizes and both reach their respective
minima at sample sizes below 2500, The effect of
including the 19 October 1987 extreme
observation is to increase both measures
substantially and then to stabilise at higher levels.
This leads to the important conclusion that
expanding the sample size for estimation by
including an extreme observation does not
necessarily improve the accuracy of predicting
future extreme observations.

Figure 15 shows that RMSPE is also highly
volatile for small sample sizes, but i#t has a
decreasing trend as the sample size increases.
Again, the inclusion of the 17 October 1987
observation spike does not lead to an improvement
in forecast performance, but there does seem to be
increased stability.

The second set of forecasts is for the period 13
May 1996 10 7 May 1997, which does not contain
any large spikes in the volatility of returns. As
before, the same backward recursion procedure
and averaging of one-day ahead forecasts is used
to obtain the forecast performance measures.
Figares 16 and 17 show that MAPE and MAPPE
are relatively stable and show mild U-shaped
patterns between 200 and 2000 observations, with
the minima occurring at about 1200 observations.
The inclusion of the 17 October 1987 extreme
observation spike shifts up beth trends and
smooths them, so that the inclusion of extreme
observations in the estimation period does not
necessarily help in prediction for a relatively calm
period.

Figure 18 for RMSPE, however, shows a different
picture, with RMSPE being rather volatile for
small sample sizes before the 17 October 1987
observation spike is included. With the inclusion
of this extreme observation, RMSPE stabilises and
starts on a slight but clear downward trend.

5 CONCLUDING REMARKS

This paper has investigated the effects of
increasing the sample sizes recursively; both with
and without the inclusion of extreme ohservations,
on the parameter estimates, t-tests and forecasts of
the GARCH(1,1) model. The results indicate that
the ARCH and GARCH parameter estimates, their
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asymptotic and robust t-ratios, the second and
fourth moment regularity conditions, and various
forecast performance measures, are all highly
volatile for small sample sizes. However, when
an extreme observation is included in the
estimation period at sample sizes above 2000, all
the sample estimates and their associated
statistics stabilise. An important implication of
these results is that increasing the sample sizes
recursively beyond the extreme observation is
Unnecessary.

Another important result is that the robust -
ratios are dramatically superior to the asympiotic
t-ratios, especially in the presence of high
volatility in the returns. The second and fourth
moinent conditions for stationarity, consistency,
and asymptotic normality are generally satisfied,
but increasing the sample sizes recursively does
not necessarily help to satisfy these conditions.
Moreover, increasing the sample sizes
recursively does not necessarily improve the
forecasting performance.
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{excluding October 1997)
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